Dynamic Evolution of Telomeric Sequences in the Green Algal Order Chlamydomonadales

نویسندگان

  • Jana Fulnečková
  • Tereza Hasíková
  • Jiří Fajkus
  • Alena Lukešová
  • Marek Eliáš
  • Eva Sýkorová
چکیده

Telomeres, which form the protective ends of eukaryotic chromosomes, are a ubiquitous and conserved structure of eukaryotic genomes but the basic structural unit of most telomeres, a repeated minisatellite motif with the general consensus sequence T(n)A(m)G(o), may vary between eukaryotic groups. Previous studies on several species of green algae revealed that this group exhibits at least two types of telomeric sequences, a presumably ancestral type shared with land plants (Arabidopsis type, TTTAGGG) and conserved in, for example, Ostreococcus and Chlorella species, and a novel type (Chlamydomonas type, TTTTAGGG) identified in Chlamydomonas reinhardtii. We have employed several methodical approaches to survey the diversity of telomeric sequences in a phylogenetically wide array of green algal species, focusing on the order Chlamydomonadales. Our results support the view that the Arabidopsis-type telomeric sequence is ancestral for green algae and has been conserved in most lineages, including Mamiellophyceae, Chlorodendrophyceae, Trebouxiophyceae, Sphaeropleales, and most Chlamydomonadales. However, within the Chlamydomonadales, at least two independent evolutionary changes to the Chlamydomonas type occurred, specifically in a subgroup of the Reinhardtinia clade (including C. reinhardtii and Volvox carteri) and in the Chloromonadinia clade. Furthermore, a complex structure of telomeric repeats, including a mix of the ancestral Arabidopsis-type motifs and derived motifs identical to the human-type telomeric repeats (TTAGGG), was found in the chlamydomonadalean clades Dunaliellinia and Stephanosphaeria. Our results indicate that telomere evolution in green algae, particularly in the order Chlamydomonadales, is far more dynamic and complex than thought before. General implications of our findings for the mode of telomere evolution are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contrasting Mitochondrial Genome Organizations and Sequence Affiliations among Green Algae: Potential Factors, Mechanisms, and Evolutionary Scenarios1

The three green algal mitochondrial genomes completely sequenced to date—those of Chlamydomonas reinhardtii Dangeard, Chlamydomonas eugametos Gerloff, and Prototheca wickerhamii Soneda & Tubaki—revealed very different mitochondrial genome organizations and sequence affiliations. The Chlamydomonas genomes resemble the ciliate/fungal/animal counterparts, and the Prototheca genome resembles land p...

متن کامل

Massive and Widespread Organelle Genomic Expansion in the Green Algal Genus Dunaliella

The mitochondrial genomes of chlamydomonadalean green algae are renowned for their highly reduced and conserved gene repertoires, which are almost fixed at 12 genes across the entire lineage. The sizes of these genomes, however, are much more variable, with some species having small, compact mitochondrial DNAs (mtDNAs) and others having expanded ones. Earlier work demonstrated that the halophil...

متن کامل

Short repetitive sequences in green algal mitochondrial genomes: potential roles in mitochondrial genome evolution.

Current data on green algal mitochondrial genomes suggest an unexpected dichotomy within the group with respect to genome structure, organization, and sequence affiliations. The present study suggests that there is a correlation between this dichotomy on one hand and the differences in the abundance, base composition, and distribution of short repetitive sequences we observed among green algal ...

متن کامل

Chloroplast phylogenomic data from the green algal order Sphaeropleales (Chlorophyceae, Chlorophyta) reveal complex patterns of sequence evolution.

Chloroplast sequence data are widely used to infer phylogenies of plants and algae. With the increasing availability of complete chloroplast genome sequences, the opportunity arises to resolve ancient divergences that were heretofore problematic. On the flip side, properly analyzing large multi-gene data sets can be a major challenge, as these data may be riddled with systematic biases and conf...

متن کامل

Fragmented and scrambled mitochondrial ribosomal RNA coding regions among green algae: a model for their origin and evolution.

Mitochondrial ribosomal RNA coding regions in the only three green algal taxa investigated to date are fundamentally different in that they are continuous in Prototheca wickerhamii, but highly fragmented and scrambled in Chlamydomonas reinhardtii and Chlamydomonas eugametos. To gain more insight into the mode of evolution of fragmented and scrambled mitochondrial ribosomal RNA (rRNA) genes with...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2012